日韩亚洲中文字幕东京热_精品亚洲成a人在线观看青青_免费av大片在线看_久久免费一区二区三区

企業(yè)內(nèi)訓(xùn)課關(guān)鍵詞

KEY WORDS OF Corporate Training

培訓(xùn)地址:
關(guān)鍵字:
Python數(shù)據(jù)建模(分類模型篇)

參加對(duì)象:業(yè)務(wù)支持部、IT系統(tǒng)部、大數(shù)據(jù)系統(tǒng)開發(fā)部、大數(shù)據(jù)分析中心、網(wǎng)絡(luò)運(yùn)維部等相關(guān)技術(shù)人員。

課程費(fèi)用:電話咨詢(含:講師費(fèi)、稅費(fèi)、教材費(fèi)、會(huì)務(wù)費(fèi)、拍攝費(fèi))

授課天數(shù):5 天

授課形式:內(nèi)訓(xùn)

聯(lián)系電話:400-008-4600;13382173255(Karen /鄭老師)

官網(wǎng):www.verocapadvisors.com

微信咨詢:Karen(注明來意)

課程背景| Course Background


課程收益| Program Benefits

掌握數(shù)據(jù)建模的標(biāo)準(zhǔn)流程。

掌握各種分類預(yù)測(cè)模型的原理,以及算法實(shí)現(xiàn)。

掌握各種分類模型類的重要參數(shù),以及應(yīng)用。

掌握模型的評(píng)估指標(biāo)、評(píng)估方法,以及過擬合評(píng)估。

掌握模型優(yōu)化的基本方法,學(xué)會(huì)超參優(yōu)化。

掌握集成優(yōu)化思想,掌握高級(jí)的分類模型。

課程大綱| Course Outline

預(yù)測(cè)建?;A(chǔ)

數(shù)據(jù)建模六步法

選擇模型:基于業(yè)務(wù)選擇恰當(dāng)?shù)臄?shù)據(jù)模型

屬性篩選:選擇對(duì)目標(biāo)變量有顯著影響的屬性來建模

訓(xùn)練模型:采用合適的算法,尋找到最合適的模型參數(shù)

評(píng)估模型:進(jìn)行評(píng)估模型的質(zhì)量,判斷模型是否可用

優(yōu)化模型:如果評(píng)估結(jié)果不理想,則需要對(duì)模型進(jìn)行優(yōu)化

應(yīng)用模型:如果評(píng)估結(jié)果滿足要求,則可應(yīng)用模型于業(yè)務(wù)場(chǎng)景

數(shù)據(jù)挖掘常用的模型

數(shù)值預(yù)測(cè)模型:回歸預(yù)測(cè)、時(shí)序預(yù)測(cè)等

分類預(yù)測(cè)模型:邏輯回歸、決策樹、神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)等

市場(chǎng)細(xì)分:聚類、RFM、PCA

產(chǎn)品推薦:關(guān)聯(lián)分析、協(xié)同過濾等

產(chǎn)品優(yōu)化:回歸、隨機(jī)效用等

產(chǎn)品定價(jià):定價(jià)策略/最優(yōu)定價(jià)等

屬性篩選/特征選擇/變量降維

基于變量本身特征

基于相關(guān)性判斷

因子合并(PCA等)

IV值篩選(評(píng)分卡使用)

基于信息增益判斷(決策樹使用)

訓(xùn)練模型及實(shí)現(xiàn)算法

模型原理

算法實(shí)現(xiàn)

模型評(píng)估

評(píng)估指標(biāo)

評(píng)估方法

過擬合評(píng)估

模型優(yōu)化

優(yōu)化模型:選擇新模型/修改模型

優(yōu)化數(shù)據(jù):新增顯著自變量

優(yōu)化公式:采用新的計(jì)算公式

模型應(yīng)用

模型解讀

模型部署

模型應(yīng)用

好模型是優(yōu)化出來的

 

分類模型評(píng)估

三個(gè)方面評(píng)估:指標(biāo)、方法、過擬合

兩大矩陣

混淆矩陣

代價(jià)矩陣

六大指標(biāo)

正確率Accuracy

查準(zhǔn)率Precision

查全率Recall

特異度Specify

F度量值(/

提升指標(biāo)lift

三條曲線

ROC曲線和AUC

PR曲線和BEP

KS曲線和KS

多分類模型評(píng)估指標(biāo)

宏指標(biāo):macro_P, macro_R

宏指標(biāo):micro_P, micro_R

模型評(píng)估方法

原始評(píng)估法

留出法(Hold-Out

交叉驗(yàn)證法(k-fold cross validation

自助采樣法(Bootstrapping

其它評(píng)估

過擬合評(píng)估:學(xué)習(xí)曲線

殘差評(píng)估:白噪聲評(píng)估

 

邏輯回歸

問題:如何評(píng)估客戶購(gòu)買產(chǎn)品的可能性?如何預(yù)測(cè)客戶行為?

如何預(yù)測(cè)客戶流失?銀行如何實(shí)現(xiàn)欠貸風(fēng)險(xiǎn)控制?

邏輯回歸模型簡(jiǎn)介

邏輯回歸的種類

二項(xiàng)邏輯回歸

多項(xiàng)邏輯回歸

邏輯回歸方程解讀

帶分類自變量的邏輯回歸

邏輯回歸的算法實(shí)現(xiàn)及優(yōu)化

迭代樣本的隨機(jī)選擇

變化的學(xué)習(xí)率

邏輯回歸+正則項(xiàng)

求解算法與懲罰項(xiàng)的互斥關(guān)系

多元邏輯回歸處理

ovo

ovr

邏輯回歸建模過程

案例sklearn庫實(shí)現(xiàn)銀行貸款違約預(yù)測(cè)

案例:訂閱者用戶的典型特征(二元邏輯回歸)

案例:通信套餐的用戶畫像(多元邏輯回歸)

 

決策樹

分類決策樹簡(jiǎn)介

演練:識(shí)別銀行欠貨風(fēng)險(xiǎn),提取欠貸者的特征

決策樹的三個(gè)關(guān)鍵問題

最優(yōu)屬性選擇

熵、基尼系數(shù)

信息增益、信息增益率

屬性最佳劃分

多元?jiǎng)澐峙c二元?jiǎng)澐?

連續(xù)變量最優(yōu)劃分

決策樹修剪

剪枝原則

預(yù)剪枝與后剪枝

構(gòu)建決策樹的算法

C5.0、CHAID、CART、QUEST

各種算法的比較

決策樹的超參優(yōu)化

決策樹的解讀

決策樹建模過程

案例商場(chǎng)酸奶購(gòu)買用戶特征提取

案例:客戶流失預(yù)警與客戶挽留

案例:識(shí)別拖欠銀行貨款者的特征,避免不良貨款

案例:識(shí)別電信詐騙者嘴臉,讓通信更安全

案例:電力竊漏用戶自動(dòng)識(shí)別

 

人工神經(jīng)網(wǎng)絡(luò)

神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介(ANN

神經(jīng)元基本原理

加法器

激活函數(shù)

神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)

隱藏層數(shù)量

神經(jīng)元個(gè)數(shù)

神經(jīng)網(wǎng)絡(luò)的建立步驟

神經(jīng)網(wǎng)絡(luò)的關(guān)鍵問題

BP算法實(shí)現(xiàn)

MLP多層神經(jīng)網(wǎng)絡(luò)

案例評(píng)估銀行用戶拖欠貨款的概率

案例:神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)產(chǎn)品銷量

 

線性判別分析(LDA

判別分析簡(jiǎn)介

基本思想

判別分析種類

判別分析算法

類間散席

類內(nèi)散席

LDA線性判別模型

多分類判別分析

案例:MBA學(xué)生錄取判別分析

案例:上市公司類別評(píng)估

 

最近鄰分類(KNN

KNN的基本原理

K近鄰的關(guān)鍵問題

K近鄰的實(shí)現(xiàn)算法

Brute暴力計(jì)算

Kd_tree

Ball_tre

 

樸素貝葉斯分類(NBN

貝葉斯簡(jiǎn)介

貝葉斯分類原理

先驗(yàn)概率和后驗(yàn)概率

條件概率和類概率

常見貝葉斯網(wǎng)絡(luò)

計(jì)算類別屬性的條件概率

估計(jì)連續(xù)屬性的條件概率

預(yù)測(cè)分類概率(計(jì)算概率)

拉普拉斯修正

案例評(píng)估銀行用戶拖欠貨款的概率

 

支持向量機(jī)(SVM

支持向量機(jī)簡(jiǎn)介

適用場(chǎng)景

支持向量機(jī)原理

支持向量

最大邊界超平面

線性不可分處理

松弛系數(shù)

非線性SVM分類

常用核函數(shù)

線性核函數(shù)

多項(xiàng)式核

高斯RBF

核函數(shù)的選擇原則

SMO算法

 

模型集成優(yōu)化篇

模型的優(yōu)化思想

集成模型的框架

Bagging

Boosting

Stacking

集成算法的關(guān)鍵過程

弱分類器如何構(gòu)建

組合策略:多個(gè)弱學(xué)習(xí)器如何形成強(qiáng)學(xué)習(xí)器

Bagging集成算法

數(shù)據(jù)/屬性重抽樣

決策依據(jù):少數(shù)服從多數(shù)

隨機(jī)森林RandomForest

Boosting集成算法

基于誤分?jǐn)?shù)據(jù)建模

樣本選擇權(quán)重更新

決策依據(jù):加權(quán)投票

AdaBoost模型

GBDT模型

XGBoost模型

LightGBM模型

 

案例實(shí)戰(zhàn)

客戶流失預(yù)測(cè)和客戶挽留模型

銀行欠貸風(fēng)險(xiǎn)預(yù)測(cè)模型

 

結(jié)束:課程總結(jié)問題答疑。

 

 

講師背景| Introduction to lecturers

珀菲特顧問|傅一航老師

講師簡(jiǎn)介 / About the Program Leader

講師:傅一航

傅一航,華為系大數(shù)據(jù)專家。

計(jì)算機(jī)軟件與理論碩士研究生(研究方向:數(shù)據(jù)挖掘、搜索引擎)。在華為工作十年,五項(xiàng)國(guó)家專利,在華為工作期間獲得華為數(shù)項(xiàng)獎(jiǎng)項(xiàng),曾在英國(guó)、日本、荷蘭和比利時(shí)等海外市場(chǎng)做項(xiàng)目,對(duì)大數(shù)據(jù)技術(shù)有深入的研究。

傅老師專注于大數(shù)據(jù)分析與挖掘、機(jī)器學(xué)習(xí)等應(yīng)用技術(shù),以及大數(shù)據(jù)系統(tǒng)部署解決方案。旨在將大數(shù)據(jù)的數(shù)據(jù)分析、數(shù)據(jù)挖掘、數(shù)據(jù)建模應(yīng)用于行業(yè)及商業(yè)領(lǐng)域,解決行業(yè)實(shí)際的問題。

1、讓管理更高效:將大數(shù)據(jù)應(yīng)用于企業(yè)管理,用大數(shù)據(jù)探索企業(yè)發(fā)展規(guī)律和行業(yè)發(fā)展趨勢(shì),有效預(yù)判市場(chǎng)變化和需求,基于規(guī)律和預(yù)判來進(jìn)行管理決策,并實(shí)現(xiàn)組織架構(gòu)演變、人才新技能培養(yǎng)、生產(chǎn)流程優(yōu)化,以及服務(wù)效率提升,最終匹配市場(chǎng)未來的變化需要,提升企業(yè)管理效率。

2、讓決策更科學(xué):將大數(shù)據(jù)應(yīng)用于運(yùn)營(yíng)決策,用大數(shù)據(jù)呈現(xiàn)企業(yè)整體經(jīng)營(yíng)狀況,診斷運(yùn)營(yíng)問題和風(fēng)險(xiǎn),找到業(yè)務(wù)短板,全面理解組織、產(chǎn)品、人員、營(yíng)銷、財(cái)務(wù)等要素間的相關(guān)性,實(shí)現(xiàn)企業(yè)資源的最優(yōu)化配置,提升科學(xué)決策能力。

3、讓營(yíng)銷更精準(zhǔn):將大數(shù)據(jù)應(yīng)用于市場(chǎng)營(yíng)銷,解決營(yíng)銷中的用戶群細(xì)分和品牌定位,客戶價(jià)值評(píng)估,分析用戶需求,產(chǎn)品設(shè)計(jì)優(yōu)化,產(chǎn)品最優(yōu)定價(jià)等實(shí)際問題,實(shí)現(xiàn)精準(zhǔn)營(yíng)銷和精準(zhǔn)推薦,以最小的營(yíng)銷成本實(shí)現(xiàn)最大化的營(yíng)銷效果。

傅老師目前致力于將大數(shù)據(jù)技術(shù)應(yīng)用于通信、金融、電商、互聯(lián)網(wǎng)、制造業(yè)、政府等領(lǐng)域。傅老師的課程最大特色:實(shí)戰(zhàn)性強(qiáng)!“圍繞業(yè)務(wù)問題+搭建分析框架+運(yùn)用分析方法+建立分析模型+熟悉分析工具+形成業(yè)務(wù)策略”。以商業(yè)目標(biāo)為起點(diǎn),基于實(shí)際的業(yè)務(wù)應(yīng)用場(chǎng)景(明確目的),搭建全面系統(tǒng)的業(yè)務(wù)框架和分析維度(分析思路),選擇最合適的方法(分析方法),深入淺出的理論講解(分析模型),使用簡(jiǎn)單實(shí)用的工具操作(分析工具),對(duì)分析結(jié)果進(jìn)行有效的解讀(數(shù)據(jù)可視化),最終形成具體的業(yè)務(wù)建議,實(shí)現(xiàn)業(yè)務(wù)分析/數(shù)據(jù)分析的閉環(huán)。

重思路:數(shù)據(jù)思維+分析框架;

重體系:分析維度+分析過程

重實(shí)戰(zhàn):分析方法+分析模型+分析工具;

重落地:可視化+數(shù)據(jù)解讀+業(yè)務(wù)策略。



培訓(xùn)課程 / Training courses

董事長(zhǎng)總經(jīng)理高管的課程:

《數(shù)字化戰(zhàn)略與商業(yè)變革》

《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

《大數(shù)據(jù)產(chǎn)業(yè)現(xiàn)狀及應(yīng)用創(chuàng)新》

《領(lǐng)導(dǎo)干部的大數(shù)據(jù)思維與決策》

 

大數(shù)據(jù)市場(chǎng)營(yíng)銷的課程:

《大數(shù)據(jù)時(shí)代的精準(zhǔn)營(yíng)銷》

“數(shù)”說營(yíng)銷----大數(shù)據(jù)營(yíng)銷分析實(shí)戰(zhàn)與沙盤》

《市場(chǎng)營(yíng)銷大數(shù)據(jù)分析實(shí)戰(zhàn)培訓(xùn)》

《大數(shù)據(jù)助力市場(chǎng)營(yíng)銷與服務(wù)提升》

 

大數(shù)據(jù)分析應(yīng)用類的課程:

《大數(shù)據(jù)分析綜合能力提升實(shí)戰(zhàn)》

《大數(shù)據(jù)建模與模型優(yōu)化實(shí)戰(zhàn)培訓(xùn)》

《大數(shù)據(jù)挖掘之SPSS工具入門與提高》

《金融行業(yè)風(fēng)險(xiǎn)預(yù)測(cè)模式實(shí)戰(zhàn)培訓(xùn)》

 

大數(shù)據(jù)分析語言Python課程:

Python開發(fā)基礎(chǔ)實(shí)戰(zhàn)培訓(xùn)》

Python數(shù)據(jù)分析與可視化實(shí)戰(zhàn)》

Python數(shù)據(jù)建模與模型優(yōu)化實(shí)戰(zhàn)》

Python數(shù)據(jù)挖掘?qū)n}分析》

Python機(jī)器學(xué)習(xí)算法實(shí)戰(zhàn)》

Python RPA辦公流程自動(dòng)化》



代表性客戶 / PART OF TRAINED COMPANIES INCLUDED BUT NOT LIMITED TO

傅老師曾提供過培訓(xùn)咨詢服務(wù)的客戶遍及通信、金融、交通、制造、政府等行業(yè),其中包括中移動(dòng)、華為、施耐德、富士康、平安集團(tuán)、中國(guó)銀行、西部航空、廣州地鐵、東風(fēng)日產(chǎn)、廣州稅務(wù)、良品鋪?zhàn)?、中冶賽迪、埃森哲、海天集團(tuán)、正泰電器等公司和單位。

銀行/郵政/保險(xiǎn)/證券等金融行業(yè)培訓(xùn)客戶

中國(guó)銀行:《大數(shù)據(jù)變革與商業(yè)模式創(chuàng)新》《大數(shù)據(jù)時(shí)代的精準(zhǔn)營(yíng)銷》

中信銀行:《大數(shù)據(jù)分析與挖掘綜合能力提升》《Python風(fēng)險(xiǎn)預(yù)測(cè)建?!?

招商銀行:《大數(shù)據(jù)分析綜合能力提升》數(shù)說營(yíng)銷》《Python數(shù)據(jù)分析》

平安銀行:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》《數(shù)說營(yíng)銷》《Python數(shù)據(jù)分析》

廣發(fā)銀行:《大數(shù)據(jù)下的精準(zhǔn)營(yíng)銷》《大數(shù)據(jù)分析綜合能力提升》

光大銀行:《大數(shù)據(jù)分析與數(shù)據(jù)挖掘應(yīng)用》《大數(shù)據(jù)時(shí)代下的精準(zhǔn)營(yíng)銷》

交通銀行:《大數(shù)據(jù)時(shí)代的精準(zhǔn)營(yíng)銷》《數(shù)說營(yíng)銷實(shí)戰(zhàn)》

建設(shè)銀行:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

浦發(fā)銀行:《大數(shù)據(jù)時(shí)代下的精準(zhǔn)營(yíng)銷》

農(nóng)業(yè)銀行:《大數(shù)據(jù)分析綜合能力提升》《Python數(shù)據(jù)分析、數(shù)據(jù)建?!?

民生銀行:《Python數(shù)據(jù)建模與模型優(yōu)化》

農(nóng)商行:《大數(shù)據(jù)分析綜合能力》《Python數(shù)據(jù)分析》《Python數(shù)據(jù)建模》

微眾銀行:《大數(shù)據(jù)分析綜合能力提升》

 

廣東郵政:《大數(shù)據(jù)分析與挖掘綜合能力提升》《大數(shù)據(jù)建模與模型優(yōu)化》

廣西郵政:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

山東郵政:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

 

平安集團(tuán):《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

平安產(chǎn)險(xiǎn):《大數(shù)據(jù)分析綜合能力提升》《大數(shù)據(jù)建模與優(yōu)化》

平安人壽:《大數(shù)據(jù)分析與應(yīng)用實(shí)戰(zhàn)》《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》《大數(shù)據(jù)時(shí)代下的精準(zhǔn)營(yíng)銷》

平安醫(yī)??萍迹骸洞髷?shù)據(jù)思維與應(yīng)用創(chuàng)新》

天安財(cái)險(xiǎn):《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

中華人壽:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

太平洋保險(xiǎn):《大數(shù)據(jù)分析綜合能力提升》

 

廣電銀通:《大數(shù)據(jù)綜合能力提升》

安信證券:《大數(shù)據(jù)時(shí)代下的金融發(fā)展》

平安普惠:《Hadoop解決方案技術(shù)培訓(xùn)》

廣汽理匯:《大數(shù)據(jù)思維與數(shù)據(jù)分析實(shí)戰(zhàn)》

金融壹帳通:《大數(shù)據(jù)分析與挖掘綜合能力提升實(shí)戰(zhàn)》

陸金所:《大數(shù)據(jù)分析綜合能力提升》

中金所:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

馬上消費(fèi)金額:《數(shù)說營(yíng)銷實(shí)戰(zhàn)》

易鑫集團(tuán):《大數(shù)據(jù)分析綜合能力提升》

五礦經(jīng)易期貨:《大數(shù)據(jù)分析綜合能力提升》

杭州銀貨通科技:《大數(shù)據(jù)產(chǎn)業(yè)發(fā)展及應(yīng)用創(chuàng)新》

中郵金融科技:《Python基礎(chǔ)與數(shù)據(jù)分析》

……

制造行業(yè)培訓(xùn)客戶

施耐德:《大數(shù)據(jù)分析》《大數(shù)據(jù)挖掘》《大數(shù)據(jù)建模及優(yōu)化》

富士康:《大數(shù)據(jù)分析綜合能力提升》

中冶賽迪:《Python數(shù)據(jù)分析》《Python數(shù)據(jù)建?!?

正泰電器:《大數(shù)據(jù)分析實(shí)戰(zhàn)》《大數(shù)據(jù)建模及優(yōu)化》

海天集團(tuán):《大數(shù)據(jù)分析實(shí)戰(zhàn)》《大數(shù)據(jù)思維與可視化》

ABB:《大數(shù)據(jù)分析實(shí)戰(zhàn)培訓(xùn)》

延峰海納川:《Python基礎(chǔ)與數(shù)據(jù)分析》《Python數(shù)據(jù)建模》《RAP辦公自動(dòng)化》

昌碩科技:《大數(shù)據(jù)分析實(shí)戰(zhàn)》

村田電子:《大數(shù)據(jù)分析綜合能力提升》

博西家用電器:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

深圳YKK吉田拉鏈:《大數(shù)據(jù)分析綜合能力提升》

雅圖仕:《大數(shù)據(jù)分析綜合能力提升》

索菲亞:《大數(shù)據(jù)分析綜合能力提升》

沁園:《大數(shù)據(jù)分析綜合能力提升》

浦林成山:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

翔路騰龍:《大數(shù)據(jù)產(chǎn)業(yè)現(xiàn)狀及應(yīng)用創(chuàng)新》

泰科:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

萬家樂:《Python基礎(chǔ)與數(shù)據(jù)分析》

億力機(jī)電:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

深圳大疆:《數(shù)說營(yíng)銷》

一汽解放錫柴:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

 

通信/運(yùn)營(yíng)商行業(yè)培訓(xùn)客戶

華為技術(shù):《話務(wù)量預(yù)測(cè)與排班管理》

聯(lián)通研究院:《大數(shù)據(jù)預(yù)測(cè)建模優(yōu)化》《Python數(shù)據(jù)分析》

北京聯(lián)通:《大數(shù)據(jù)分析綜合能力提升》《數(shù)說營(yíng)銷》《數(shù)據(jù)挖掘?qū)n}分析》

廣州電信:《大數(shù)據(jù)時(shí)代的精準(zhǔn)營(yíng)銷》

北京電信:《大數(shù)據(jù)分析綜合能力提升》

香港電信:《大數(shù)據(jù)精準(zhǔn)營(yíng)銷實(shí)戰(zhàn)》

上海電信:《渠道大數(shù)據(jù)分析與挖掘思路及方法》兩期

河北電信:《數(shù)據(jù)化運(yùn)營(yíng)下的大數(shù)據(jù)分析綜合能力提升實(shí)戰(zhàn)》

南京電信:《大數(shù)據(jù)視圖支撐精準(zhǔn)化營(yíng)銷》

佛山電信:《數(shù)據(jù)挖掘技術(shù)及其應(yīng)用培訓(xùn)》

泉州電信:《大數(shù)據(jù)挖掘、信息分析及應(yīng)用培訓(xùn)》

湖北聯(lián)通:《大數(shù)據(jù)分析與商業(yè)智能》

廣東聯(lián)通:《數(shù)據(jù)分析與數(shù)據(jù)挖掘?qū)崙?zhàn)培訓(xùn)》兩期

江蘇聯(lián)通:《大數(shù)據(jù)分析綜合能力提升》

吉林聯(lián)通:《大數(shù)據(jù)分析綜合能力提升-中級(jí)》

烏魯木齊聯(lián)通:《大數(shù)據(jù)分析綜合能力提升》

上海移動(dòng):《大數(shù)據(jù)分析與挖掘、建模及優(yōu)化》叁期

浙江移動(dòng):《大數(shù)據(jù)分析與數(shù)據(jù)挖掘應(yīng)用實(shí)戰(zhàn)》

江蘇移動(dòng):《大數(shù)據(jù)精準(zhǔn)營(yíng)銷技能提升實(shí)戰(zhàn)》

深圳移動(dòng):《大數(shù)據(jù)分析綜合能力提升》

廣西移動(dòng):《大數(shù)據(jù)發(fā)展趨勢(shì)及在公司營(yíng)銷領(lǐng)域的應(yīng)用》

遼寧移動(dòng)2:《數(shù)據(jù)分析方法與經(jīng)營(yíng)分析技巧》

泉州移動(dòng)3期:《數(shù)說營(yíng)銷—市場(chǎng)營(yíng)銷數(shù)據(jù)分析與挖掘應(yīng)用》

德陽移動(dòng)2期:《大數(shù)據(jù)挖掘與建模優(yōu)化實(shí)戰(zhàn)培訓(xùn)》

浙江移動(dòng):《大數(shù)據(jù)產(chǎn)品營(yíng)銷能力提升》

四川移動(dòng):《大數(shù)據(jù)分析與挖掘綜合能力提升》

吉林移動(dòng):《數(shù)據(jù)分析與數(shù)據(jù)挖掘培訓(xùn)》;

貴州移動(dòng):《“數(shù)”說營(yíng)銷----大數(shù)據(jù)營(yíng)銷實(shí)戰(zhàn)與沙盤》

海南移動(dòng):《基于大數(shù)據(jù)運(yùn)營(yíng)的用戶行為分析與精準(zhǔn)定位》

山東移動(dòng):《大數(shù)據(jù)分析綜合能力提升》

深圳移動(dòng):《大數(shù)據(jù)在行業(yè)內(nèi)外的應(yīng)用》

中國(guó)移動(dòng)終端公司:《大數(shù)據(jù)分析綜合能力提升培訓(xùn)》

中山移動(dòng):《“數(shù)”說營(yíng)銷----大數(shù)據(jù)營(yíng)銷實(shí)戰(zhàn)與沙盤》

東莞移動(dòng):《“數(shù)”說營(yíng)銷----大數(shù)據(jù)營(yíng)銷實(shí)戰(zhàn)與沙盤》

成都移動(dòng):《數(shù)字化運(yùn)營(yíng)下的數(shù)據(jù)分析與數(shù)據(jù)挖掘》

眉山移動(dòng)2期:《大數(shù)據(jù)分析綜合能力提升》

云浮移動(dòng):《大數(shù)據(jù)挖掘和信息提煉專項(xiàng)培訓(xùn)》

陽江移動(dòng):《小數(shù)據(jù)·大運(yùn)營(yíng)--運(yùn)營(yíng)數(shù)據(jù)的分析與挖掘》

德陽移動(dòng):《電信運(yùn)營(yíng)商市場(chǎng)營(yíng)銷數(shù)據(jù)挖掘應(yīng)用典型案例》

陜西在線:“數(shù)”說營(yíng)銷----大數(shù)據(jù)營(yíng)銷實(shí)戰(zhàn)與沙盤》

四川在線:“數(shù)”說營(yíng)銷----大數(shù)據(jù)營(yíng)銷實(shí)戰(zhàn)與沙盤》

大連移動(dòng):《“數(shù)”說營(yíng)銷----大數(shù)據(jù)營(yíng)銷實(shí)戰(zhàn)與沙盤》

內(nèi)蒙古移動(dòng):《大數(shù)據(jù)分析與Hadoop大數(shù)據(jù)解決方案》

貴州中移通信:《SPSS數(shù)據(jù)分析與數(shù)據(jù)挖掘應(yīng)用實(shí)戰(zhàn)》

天翼愛音樂:《大數(shù)據(jù)分析綜合能力提升》

……

 

能源電力交通物流培訓(xùn)客戶

西部航空《數(shù)字化運(yùn)營(yíng)下的數(shù)據(jù)分析與數(shù)據(jù)挖掘應(yīng)用培訓(xùn)》

貴賓公司:《市場(chǎng)營(yíng)銷數(shù)據(jù)的分析》

海南航空:《利用大數(shù)據(jù)營(yíng)銷提升航線收益》

南方航空:《大數(shù)據(jù)精準(zhǔn)營(yíng)銷實(shí)戰(zhàn)》

深圳公交集團(tuán):《大數(shù)據(jù)與智慧交通》

東風(fēng)日產(chǎn):《大數(shù)據(jù)分析與挖掘綜合能力提升》

柳州上汽五菱:《大數(shù)據(jù)下的精準(zhǔn)營(yíng)銷實(shí)戰(zhàn)》

東風(fēng)商用:《數(shù)說營(yíng)銷實(shí)戰(zhàn)》

東風(fēng)出行:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

廣州地鐵:《大數(shù)據(jù)分析與數(shù)據(jù)挖掘培訓(xùn)》兩期

富維江森:《數(shù)字化運(yùn)營(yíng)下的數(shù)據(jù)分析與數(shù)據(jù)挖掘應(yīng)用培訓(xùn)》

保時(shí)捷:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》《大數(shù)據(jù)分析實(shí)戰(zhàn)》

忻州供電局:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

延長(zhǎng)殼牌:《大數(shù)據(jù)分析與挖掘綜合能力提升》

寶雞國(guó)電:《大數(shù)據(jù)分析與挖掘》兩期

寧夏國(guó)電:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》兩期

云南電網(wǎng):《大數(shù)據(jù)時(shí)代下的精準(zhǔn)營(yíng)銷》

天津國(guó)電:《大數(shù)據(jù)分析綜合能力提升》

上海城投水務(wù):《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

深圳水務(wù):《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

中海油:《大數(shù)據(jù)分析實(shí)戰(zhàn)》

神南礦業(yè):《大數(shù)據(jù)產(chǎn)業(yè)發(fā)展與應(yīng)用創(chuàng)新》

珠海港興:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

神南礦業(yè):《大數(shù)據(jù)產(chǎn)業(yè)發(fā)展與應(yīng)用創(chuàng)新》

安能物流:《大數(shù)據(jù)分析綜合能力提升》

順豐速運(yùn):《大數(shù)據(jù)分析綜合能力提升》《數(shù)據(jù)精準(zhǔn)營(yíng)銷實(shí)戰(zhàn)》

……

直銷/零售/電商/互聯(lián)網(wǎng)等行業(yè)培訓(xùn)客戶

良品鋪?zhàn)樱骸?/span>大數(shù)據(jù)分析綜合能力提升》兩期

周大福:《大數(shù)據(jù)分析與挖掘?qū)崙?zhàn)培訓(xùn)》

新時(shí)代:《問題的挖掘、分析—數(shù)據(jù)分析技巧》兩期培訓(xùn)

深圳欣盛商:《電商大數(shù)據(jù)分析

無限極:《大數(shù)據(jù)分析綜合能力提升》兩期

歐萊雅:《Python根因分析與預(yù)測(cè)》

玫琳凱:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》《大數(shù)據(jù)分析實(shí)戰(zhàn)》

上海找鋼網(wǎng):《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

頂新國(guó)際:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

華潤(rùn)集團(tuán):《大數(shù)據(jù)時(shí)代下的精準(zhǔn)營(yíng)銷》

壹藥網(wǎng):《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

 

其他行業(yè)部分培訓(xùn)客戶

埃森哲:《Python基礎(chǔ)與數(shù)據(jù)分析》《Python數(shù)據(jù)分析與可視化》《RAP流程自動(dòng)化化》

嶺南集團(tuán):《大數(shù)據(jù)時(shí)代下的精準(zhǔn)營(yíng)銷》

贛州監(jiān)獄:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》叁期

貴州中煙:《互聯(lián)網(wǎng)+時(shí)代的大數(shù)據(jù)思維》

廣州稅務(wù):《大數(shù)據(jù)分析與挖掘?qū)崙?zhàn)》叁期

西部數(shù)據(jù):《大數(shù)據(jù)分析綜合能力提升》

文思海輝:《大數(shù)據(jù)分析綜合能力提升》

內(nèi)蒙古社科聯(lián):《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

深圳會(huì)展中心:《大數(shù)據(jù)價(jià)值實(shí)現(xiàn)與應(yīng)用創(chuàng)新》

重慶國(guó)際復(fù)材:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》

挑戰(zhàn)牧業(yè):《大數(shù)據(jù)分析綜合能力提升》

廣東立白:大數(shù)據(jù)分析綜合能力提升》

……


服務(wù)流程

Service Procedure

  • 提交需求
  • 溝通診斷
  • 項(xiàng)目調(diào)研
  • 方案設(shè)計(jì)
  • 達(dá)成共識(shí)
  • 項(xiàng)目實(shí)施
  • 持續(xù)跟蹤
  • 效果評(píng)估

服務(wù)優(yōu)勢(shì)

Service Advantages

  • 對(duì)行業(yè)特性的深刻理解

    我們擁有幾百家各類企業(yè)的項(xiàng)目咨詢基礎(chǔ)、多行業(yè)數(shù)據(jù)庫、多年的行業(yè)經(jīng)驗(yàn),并對(duì)企業(yè)進(jìn)行深度研究和剖析,總結(jié)出一系列深入的觀點(diǎn)和經(jīng)驗(yàn)。

  • 豐富的案例庫及落地方案

    我們的咨詢方案的設(shè)計(jì)過程秉承“知行合一”的理念,既具備理論知識(shí),又重視項(xiàng)目的實(shí)操性。經(jīng)過多年的經(jīng)驗(yàn),我們積累了豐富的案例庫,涉及18個(gè)領(lǐng)域,近千個(gè)案例,并將案例與咨詢項(xiàng)目完美結(jié)合。

  • 經(jīng)驗(yàn)深厚的咨詢團(tuán)隊(duì)

    我們的咨詢團(tuán)隊(duì)分布于各大領(lǐng)域,擁有多年的業(yè)內(nèi)從業(yè)經(jīng)驗(yàn),具備豐富的企業(yè)管理實(shí)操經(jīng)驗(yàn)。在定制咨詢方案前,我們會(huì)為客戶匹配多位業(yè)內(nèi)咨詢師,供客戶進(jìn)行比對(duì)選擇,根據(jù)客戶需求及問題,定制化地設(shè)計(jì)咨詢方案,確保項(xiàng)目的順利進(jìn)行。

關(guān)于珀菲特顧問

ABOUT PERFECT CONSULTANT

我們是?人才培養(yǎng)與智能制造解決方案提供商。

We are? Talent training and intelligent manufacturing solutions provider.

我們做什么?承接組織績(jī)效提升與人才學(xué)習(xí)發(fā)展業(yè)務(wù)。

What we do ?Provide organizational performance improvement and talent learning development business.

服務(wù)的客戶:世界五百?gòu)?qiáng)企業(yè)、合資工廠、國(guó)有企業(yè)、快速發(fā)展的民營(yíng)企業(yè)、行業(yè)領(lǐng)頭企業(yè)。

Customers:Each year, we serves more than 1000 enterprises (including fortune 500 enterprises, joint venture factories, state-owned enterprises, rapidly developing private enterprises and industry-leading enterprises).

  • 2011年成立

    10年更懂你

  • 6000+

    中大型企業(yè)共同選擇

  • 600000+

    累計(jì)培訓(xùn)學(xué)員

  • 1500+

    現(xiàn)有公開課

  • 10000+

    現(xiàn)有內(nèi)訓(xùn)課

  • 800+

    現(xiàn)有在線課程

  • 20+

    輻射城市

線下業(yè)務(wù)

OFFLINE BUSINESS

  • 內(nèi)訓(xùn)課

    高層團(tuán)隊(duì)引導(dǎo)工作坊

    中層管理內(nèi)訓(xùn)

    基層管理內(nèi)訓(xùn)

  • 項(xiàng)目咨詢

    人才梯隊(duì)建設(shè)咨詢項(xiàng)目

    工廠運(yùn)營(yíng)咨詢項(xiàng)目

    TTT內(nèi)訓(xùn)師咨詢項(xiàng)目

  • 公開課

    領(lǐng)導(dǎo)力公開課

    精益智造公開課

    個(gè)人效能公開課

線上業(yè)務(wù)

ONLINE BUSINESS

數(shù)字化搭建企業(yè)學(xué)習(xí)平臺(tái),加速人才培養(yǎng)
功能包含:作業(yè)管理、考試管理、簽到管理、課程學(xué)習(xí)、排名管理、微課上傳、直播等
700門在線課程,任選10門課程體驗(yàn),掃碼注冊(cè)體驗(yàn)


培訓(xùn)的客戶涵蓋多個(gè)行業(yè)的知名企業(yè)

PART OF TRAINED COMPANIES INCLUDED BUT NOT LIMITED TO

數(shù)字化搭建企業(yè)學(xué)習(xí)平臺(tái),加速人才培養(yǎng)

專屬云大學(xué),一鍵部署,智能配課,千人千面

1.點(diǎn)擊下面按鈕復(fù)制微信號(hào)

13382173255

點(diǎn)擊復(fù)制微信號(hào)

珀菲特企業(yè)管理
Karen /鄭老師